简介

简而言之,实现 MVCC 的 DBMS 在内部维持着单个逻辑数据的多个物理版本,当事务修改某数据时,DBMS 将为其创建一个新的版本;当事务读取某数据时,它将读到该数据在事务开始时刻之前的最新版本。

MVCC 首次被提出是在 1978 年的一篇 MIT 的博士论文中。在 80 年代早期,DEC 的 Rdb/VMS 和 InterBase 首次真正实现了 MVCC,其作者是 Jim Starkey,NuoDB 的联合创始人。如今,Rdb/VMS 成了 Oracle Rdb,InterBase 成为开源项目 Firebird。

MVCC

MVCC 的核心优势可以总结为以下两句话:

  • Writers don’t block readers. 写不阻塞读

  • Readers don’t block writers. 读不阻塞写

只读事务无需加锁就可以读取数据库某一时刻的快照,如果保留数据的所有历史版本,DBMS 甚至能够支持读取任意历史版本的数据,即 time-travel。

Example #1

事务分别获得时间戳 1 和 2,二者的执行过程如下图所示。开始前,数据库存有数据 A 的原始版本 先读取 A 数据:

img

然后 修改 A 数据,这时 DBMS 中将增加 A 数据的新版本 ,同时标记 的开始时间戳为 2, 的结束时间戳为 2:

img

再次读取 A,因为它的时间戳为 1,根据记录的信息,DBMS 将 返回给 :

img

Example #2

例 2 与例 1 类似,先修改数据 A:

img

此时 读取 A,由于尚未提交,只能读取

img

想修改 A,但由于有另一个活跃的事务 正在修改 A , 需要等待 提交后才能继续推进:

img

提交后,创建了 A 的下一个版本

img

小结

MVCC 并不只是一个并发控制协议,并发控制协议只是它的一个组成部分。它深刻地影响了 DBMS 管理事务和数据的方式,使用 MVCC 的 DBMS 数不胜数:

img

Design Decisions

上文提到,MVCC 不止是一个并发控制协议,它由许多部分组成,这些部分包括:

  • Concurrency Control Protocol

  • Version Storage

  • Garbage Collection

  • Index Management

每一部分都可以选择不同的方案,可以根据具体场景作出最优的设计选择。

Concurrency Control Protocol

前面 2 节课已经介绍了各种并发控制协议,MVCC 可以选择其中任意一个:

  • Approach 1: Timestamp Ordering (T/O):为每个事务赋予时间戳,并用以决定执行顺序;

  • Approach 2: Optimistic Concurrency Control (OCC):为每个事务创建 private workspace,并将事务分为 read, write 和 validate 3 个阶段处理 ;

  • Approach 3: Two-Phase Locking (2PL):按照 2PL 的约定获取和释放锁;

Version Storage

如何存储一条数据的多个版本?DBMS 通常会在每条数据上拉一条版本链表 (version chain),所有相关的索引都会指到这个链表的 head,DBMS 可以利用它找到一个事务应该访问到的版本。不同的版本存储方案在 version chain 上存储的数据不同,主要有 3 种存储方案:

  • Approach 1: Append-Only Storage:

    新版本通过追加的方式存储在同一张表中。如下图所示,同一个逻辑数据的所有物理版本都被存储在同一张表上,每次更新时,就往表上追加一个新的版本记录,并在旧版本的数据上增加一个指针指向新版本:

    | img | img |
    | —————————————————————————————— | —————————————————————————————— |

    也许你已经注意到,指针的方向也可以从新到旧,二者的权衡如下:

    • Approach 1: Oldest-to-Newest (O2N):

      写的时候追加即可,读的时候需要遍历链表 ;

    • Approach 2: Newest-to-Oldest (N2O):

      写的时候需要更新所有索引指针,读的时候不需要遍历链表;

  • Approach 2: Time-Travel Storage:

    老版本被复制到单独的一张表中。单独拿一张表 (Time-Travel Table) 来存历史数据,每当更新数据时,就把当前版本复制到 TTT 中,并更新指针:

    | img |
    | —————————————————————————————— |
    | img |
    | img |

  • Approach 3: Delta Storage:

    老版本数据的被修改的字段值被复制到一张单独的增量表 (delta record space) 中。每次更新,仅将变化的字段信息存储到 delta storage segment 中:

    | img |
    | —————————————————————————————— |
    | img |

Garbage Collection

随着时间的推移,DBMS 中数据的旧版本可能不再会被用到,如:

  • 已经没有活跃的事务需要看到该版本

  • 该版本是被一个已经中止的事务创建

这时候 DBMS 需要删除这些可以回收的物理版本,这个过程也被称为 GC。在 GC 的过程中,还有两个附加设计决定:

  • 如何查找过期的数据版本

  • 如何确定某版本数据是否可以被安全回收

GC 可以从两个角度出发:

  • Approach 1: Tuple-level:

    直接检查每条数据的旧版本数据,Background Vacuuming。

    如下图所示,假设有 2 个活跃事务,它们的时间戳分别为 12 和 25:

    img

    这时有个 Vacuum 守护线程会周期性地检查每条数据的不同版本,如果它的结束时间小于当前活跃事务的最小时间戳,则将其删除:

    img

    为了加快 GC 的速度,DBMS 可以再维护一个脏页位图 (dirty page bitmap),利用它,Vacuum 线程可以只检查发生过改动的数据,用空间换时间。Background Vacuuming 被用于任意 Version Storage 的方案。

    Cooperative Cleaning,还有一种做法是当 worker thread 查询数据时,顺便将不再使用物理数据版本删除,cooperative cleaning 只能用于使用 O2N 的 version chain 方案。

    img

    img

  • Approach 2: Transaction-level:

    每个事务负责跟踪数据的旧版本,DBMS 不需要亲自检查单条数据。让每个事务都保存着它的读写数据集合 (read/write set),当 DBMS 决定什么时候这个事务创建的各版本数据可以被回收时,就按照集合内部的数据处理即可。

Index Management

Primary Key Index,主键索引直接指向 version chain 的头部。

Secondary Indexes,二级索引有两种方式指向数据本身:

  • Approach 1:逻辑指针,即存储主键值或 Tuple Id
  • Approach 2:物理指针,即存储指向 version chain 头部的指针

Physical Pointer

img

Logical Pointer by Primary Key

img

Logical Pointer by Tuple Id

img

MVCC Implementations

市面上 MVCC 的实现所做的设计决定如下表所示:

img

MVCC 被许多 DBMS 采用,即使那些不支持多语句事务 (multi-statement txns) 的 DBMS 也会使用这种方案,如一些 NoSQL 项目。

转载:https://zhenghe.gitbook.io/open-courses/cmu-15-445-645-database-systems/multi-version-concurrency-control